Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894622

RESUMO

Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease.


Assuntos
Doença de Fabry , alfa-Galactosidase , Camundongos , Animais , alfa-Galactosidase/genética , Doença de Fabry/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Hidrolases , Radioisótopos de Flúor/química
2.
Prog Neurobiol ; 219: 102369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330924

RESUMO

Sensing smells of foods, prey, or predators determines animal survival. Olfactory sensory neurons in the olfactory epithelium (OE) detect odorants, where cAMP and Ca2+ play a significant role in transducing odorant inputs to electrical activity. Here we show Anoctamin 9, a cation channel activated by cAMP/PKA pathway, is expressed in the OE and amplifies olfactory signals. Ano9-deficient mice had reduced olfactory behavioral sensitivity, electro-olfactogram signals, and neural activity in the olfactory bulb. In line with the difference in olfaction between birds and other vertebrates, chick ANO9 failed to respond to odorants, whereas chick CNGA2, a major transduction channel, showed greater responses to cAMP. Thus, we concluded that the signal amplification by ANO9 is important for mammalian olfactory transduction.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Camundongos , Anoctaminas/metabolismo , Mamíferos/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia
3.
Front Cell Dev Biol ; 10: 868143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784472

RESUMO

To identify potential regions of the voltage-sensing domain that could shift the voltage sensitivity of Ciona intestinalis based Genetically Encoded Voltage Indicators (GEVIs), we aligned the amino acid sequences of voltage-gated sodium channels from different organisms. Conserved polar residues were identified at multiple transmembrane/loop junctions in the voltage sensing domain. Similar conservation of polar amino acids was found in the voltage-sensing domain of the voltage-sensing phosphatase gene family. These conserved residues were mutated to nonpolar or oppositely charged amino acids in a GEVI that utilizes the voltage sensing domain of the voltage sensing phosphatase from Ciona fused to the fluorescent protein, super ecliptic pHluorin (A227D). Different mutations shifted the voltage sensitivity to more positive or more negative membrane potentials. Double mutants were then created by selecting constructs that shifted the optical signal to a more physiologically relevant voltage range. Introduction of these mutations into previously developed GEVIs resulted in Plos6-v2 which improved the dynamic range to 40% ΔF/F/100 mV, a 25% increase over the parent, ArcLight. The onset time constant of Plos6-v2 is also 50% faster than ArcLight. Thus, Plos6-v2 appears to be the GEVI of choice.

4.
Curr Issues Mol Biol ; 44(3): 1294-1315, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35723310

RESUMO

Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.

5.
Drug Metab Dispos ; 50(7): 980-988, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545257

RESUMO

Quantitative assessment of hepatic clearance (CLH) of drugs is critical to accurately predict human dose and drug-drug interaction (DDI) liabilities. This is challenging for drugs that involve complex transporter-enzyme interplay. In this study, we demonstrate this interplay in the CLH and DDI effect in the presence of CYP3A4 perpetrator for pevonedistat using both the conventional clearance model (CCM) and the extended clearance model (ECM). In vitro metabolism and hepatocyte uptake data showed that pevonedistat is actively transported into the liver via multiple uptake transporters and metabolized predominantly by CYP3A4 (88%). The active uptake clearance (CLact,inf) and passive diffusion clearance (CLdiff,inf) were 21 and 8.7 ml/min/kg, respectively. The CLact,inf was underpredicted as Empirical Scaling Factor of 13 was needed to recover the in vivo plasma clearance (CLplasma). Both CCM and ECM predicted CLplasma of pevonedistat reasonably well (predicted CLplasma of 30.8 (CCM) and 32.1 (ECM) versus observed CLplasma of 32.2 ml/min/kg). However, both systemic and liver exposures in the presence of itraconazole were well predicted by ECM but not by CCM (predicted pevonedistat plasma area under the concentration-time curve ratio (AUCR) 2.73 (CCM) and 1.23 (ECM))., The ECM prediction is in accordance with the observed clinical DDI data (observed plasma AUCR of 1.14) that showed CYP3A4 inhibition did not alter pevonedistat exposure systemically, although ECM predicted liver AUCR of 2.85. Collectively, these data indicated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat and are consistent with the lack of systemic clinical DDI with itraconazole. SIGNIFICANCE STATEMENT: In this study, we successfully demonstrated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat. Both the conventional and extended clearance models predict CLplasma of pevonedistat well however, only the ECM accurately predicted DDI effect in the presence of itraconazole, thus providing further evidence for the lack of DDI with CYP3A4 perpetrators for drugs that involve complex transporter-enzyme interplay as there are currently not many examples in the literature except prototypical OATP substrate drugs.


Assuntos
Citocromo P-450 CYP3A , Itraconazol , Ciclopentanos , Citocromo P-450 CYP3A/metabolismo , Humanos , Itraconazol/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Pirimidinas
6.
Drug Metab Dispos ; 50(7): 989-997, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504658

RESUMO

Metabolism and disposition of pevonedistat, an investigational, first-in-class inhibitor of the NEDD8-activating enzyme (NAE), were characterized in patients with advanced solid tumors after intravenous infusion of [14C]pevonedistat at 25 mg/m2 (∼60-85 µCi radioactive dose). More than 94% of the administered dose was recovered, with ∼41% and ∼53% of drug-related material eliminated in urine and feces, respectively. The metabolite profiles of [14C]pevonedistat were established in plasma using an accelerator mass spectrometer and excreta with traditional radiometric analysis. In plasma, unchanged parent drug accounted for approximately 49% of the total drug-related material. Metabolites M1 and M2 were major (>10% of the total drug-related material) circulating metabolites and accounted for approximately 15% and 22% of the drug-related material, respectively. Unchanged [14C]pevonedistat accounted for approximately 4% and 17% of the dose in urine and feces, respectively. Oxidative metabolites M1, M2, and M3 appeared as the most abundant drug-related components in the excreta and represented approximately 27%, 26%, and 15% of the administered dose, respectively. Based on the unbound plasma exposure in cancer patients and in vitro NAE inhibition, the contribution of metabolites M1 and M2 to overall in vivo pharmacological activity is anticipated to be minimal. The exposure to these metabolites was higher at safe and well tolerated doses in rat and dog (the two preclinical species used in toxicology evaluation) plasma than that observed in human plasma. Reaction phenotyping studies revealed that CYP3A4/5 are primary enzymes responsible for the metabolic clearance of pevonedistat. SIGNIFICANCE STATEMENT: This study details the metabolism and clearance mechanisms of pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, after intravenous administration to patients with cancer. Pevonedistat is biotransformed to two major circulating metabolites with higher exposure in nonclinical toxicological species than in humans. The pharmacological activity contribution of these metabolites is minimal compared to the overall target pharmacological effect of pevonedistat. Renal clearance was not an important route of excretion of unchanged pevonedistat (∼4% of the dose).


Assuntos
Neoplasias , Pirimidinas , Administração Oral , Animais , Ciclopentanos , Cães , Inibidores Enzimáticos/uso terapêutico , Fezes , Infusões Intravenosas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ratos
7.
Oral Oncol ; 130: 105903, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569318

RESUMO

OBJECTIVES: Percutaneous endoscopic gastrostomy (PEG) placement is essential for the provision of enteral nutrition in select head and neck cancer (HNC) patients. Minimally invasive tube placement is facilitated through one of two techniques, push or pull, but there have been conflicting results regarding safety profiles of these procedures. The objectives of this study were to determine the association of PEG insertion technique with gastrostomy tube complications, including stomal metastases. METHODS: A multi-institutional retrospective cohort study of patients with HNC undergoing PEG insertion by either the pull (gastroscope assisted) or push (fluoroscopy assisted) technique was performed. Tube-related complications included infection, dislodgement, deterioration, leak, and other. Adjusted analysis was performed via a multivariable logistic regression model. RESULTS: 1,575 patients were included across three institutions. Tube-related complications occurred in 36% of patients, the most common being peristomal leak (13%) and infection (16%). The push technique (OR 2.66, 95% CI: 1.42-4.97), and the presence of T4 disease (OR 4.62, 95% CI: 1.58-13.51), were associated with a greater risk of developing any tube-related complication. Infection rates were similar between pull and push cohorts. All detected stoma metastases occurred with the pull technique, with an overall prevalence of 0.32% amongst the cohort. CONCLUSIONS: The push technique is associated with a greater risk of developing any tube-related complication, but the rate of stomal metastases may be higher with the pull technique. There is potential for quality improvement measures to improve tube-related complications associated with either technique.


Assuntos
Gastrostomia , Neoplasias de Cabeça e Pescoço , Nutrição Enteral/métodos , Gastrostomia/efeitos adversos , Gastrostomia/métodos , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
8.
Sci Adv ; 8(20): eabn1717, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594359

RESUMO

Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measurements that preserve both the protection of the LDPC codes and the low overheads in terms of the required number of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.

9.
Sci Rep ; 12(1): 1875, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115567

RESUMO

Genetically encoded voltage indicators (GEVIs) allow optical recordings of membrane potential changes in defined cell populations. Transgenic reporter animals that facilitate precise and repeatable targeting with high expression levels would further the use of GEVIs in the in vivo mammalian brain. However, the literature on developing and applying transgenic mouse lines as vehicles for GEVI expression is limited. Here we report the first in vivo experiments using a transgenic reporter mouse for the GEVI ArcLight, which utilizes a Cre/tTA dependent expression system (TIGRE 1.0). We developed two mouse lines with ArcLight expression restricted to either olfactory receptor neurons, or a subpopulation of interneurons located in the granule and glomerular layers in the olfactory bulb. The ArcLight expression in these lines was sufficient for in vivo imaging of odorant responses in single trials using epifluorescence and 2-photon imaging. The voltage responses were odor-specific and concentration-dependent, which supported earlier studies about perceptual transformations carried out by the bulb that used calcium sensors of neural activity. This study demonstrates that the ArcLight transgenic line is a flexible genetic tool that can be used to record the neuronal electrical activity of different cell types with a signal-to-noise ratio that is comparable to previous reports using viral transduction.


Assuntos
Técnicas Biossensoriais , Interneurônios/metabolismo , Proteínas Luminescentes/metabolismo , Potenciais da Membrana , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Imagens com Corantes Sensíveis à Voltagem , Animais , Genes Reporter , Proteínas Luminescentes/genética , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Odorantes , Bulbo Olfatório/citologia , Percepção Olfatória , Proteínas Recombinantes de Fusão/genética , Olfato
10.
Exp Mol Pathol ; 126: 104750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35192844

RESUMO

The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.


Assuntos
Hepatopatias Alcoólicas , Pesquisa Translacional Biomédica , Etanol , Humanos , Fígado , Hepatopatias Alcoólicas/genética
12.
Curr Issues Mol Biol ; 43(3): 2022-2035, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34889885

RESUMO

Hepatitis C virus (HCV)-induced liver disease contributes to chronic hepatitis. The immune factors identified in HCV include changes in the innate and adaptive immune system. The inflammatory mediators, known as "inflammasome", are a consequence of the metabolic products of cells and commensal or pathogenic bacteria and viruses. The only effective strategy to prevent disease progression is eradication of the viral infection. Immune cells play a pivotal role during liver inflammation, triggering fibrogenesis. The present paper discusses the potential role of markers in cell death and the inflammatory cascade leading to the severity of liver damage. We aim to present the clinical parameters and laboratory data in a cohort of 88 HCV-infected non-cirrhotic and 25 HCV cirrhotic patients, to determine the characteristic light microscopic (LM) and transmission electron microscopic (TEM) changes in their liver biopsies and to present the link between the severity of liver damage and the serum levels of cytokines and caspases. A matched HCV non-infected cohort was used for the comparison of serum inflammatory markers. We compared the inflammation in HCV individuals with a control group of 280 healthy individuals. We correlated the changes in inflammatory markers in different stages of the disease and the histology. We concluded that the serum levels of cytokine, chemokine, and cleaved caspase markers reveal the inflammatory status in HCV. Based upon the information provided by the changes in biomarkers the clinician can monitor the severity of HCV-induced liver damage. New oral well-tolerated treatment regimens for chronic hepatitis C patients can achieve cure rates of over 90%. Therefore, using the noninvasive biomarkers to monitor the evolution of the liver damage is an effective personalized medicine procedure to establish the severity of liver injury and its repair.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Fígado/metabolismo , Fígado/virologia , Apoptose , Biomarcadores , Estudos de Casos e Controles , Morte Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Hepatite C/patologia , Humanos , Mediadores da Inflamação/metabolismo , Fígado/patologia , Fígado/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548400

RESUMO

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Assuntos
Compostos de Boro/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Administração Oral , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Domínio Catalítico , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/química
15.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34380657

RESUMO

While humans and other mammals exhibit adaptation to odorants, the neural mechanisms and brain locations involved in this process are incompletely understood. One possibility is that it primarily occurs as a result of the interactions between odorants and odorant receptors on the olfactory sensory neurons in the olfactory epithelium. In this scenario, adaptation would arise as a peripheral phenomenon transmitted to the brain. An alternative possibility is that adaptation occurs because of processing in the brain. We made an initial test of these possibilities using a two-color imaging strategy to simultaneously measure the activity of the olfactory receptor nerve terminals (input to the bulb) and mitral/tufted cell apical dendrites (output from the bulb) in anesthetized and awake mice. Repeated odor stimulation at the same concentration resulted in a decline in the bulb output, while the input remained relatively stable. Thus, the mammalian olfactory bulb appears to participate in generating the perception of olfactory adaptation under this stimulus condition. Similar experiments conducted previously showed that the bulb may also participate in the perception of concentration invariance of odorant recognition (Storace and Cohen, 2017); thus, the bulb is simultaneously carrying out more than one computation, as is true of other mammalian brain regions and perhaps is the case for all animals with sophisticated nervous systems. However, in contrast with other sensory systems (Van Essen et al., 1992), the very first processing stage in the olfactory system has an output that may directly represent perceptions.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Animais , Mamíferos , Camundongos , Odorantes , Olfato
16.
Med Anthropol Q ; 34(4): 542-560, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274529

RESUMO

Old age has been central to public health rationalities and contestations of the 2019-2020 coronavirus pandemic. This article thinks through what age is and does in pandemic times by juxtaposing four domains of ethical publicity in which age comes to matter: (1) mass fatality of old persons under conditions of variable unpreparedness; (2) circulation of social-Darwinist argument for herd immunity through culling of the weak; (3) everyday challenges of late life care as these are amplified under quarantine; and (4) long-term conditions of economic and political impasse and environmental collapse, experienced as failure of older generations and abandonment of younger ones, a situation here termed generational affect. It asks to what extent the figure of the cullable old renders racialized disparities natural and makes sense through a generational affect in which the world feels as if the survival of the young is in question.


Assuntos
Envelhecimento , COVID-19/epidemiologia , Seleção de Pacientes , Saúde Pública/ética , SARS-CoV-2 , Idoso , Antropologia Médica , COVID-19/mortalidade , Humanos , Imunidade Coletiva , Saúde Pública/métodos , Responsabilidade Social
17.
J Pharm Pharm Sci ; 23: 301-313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32762830

RESUMO

Cannabis has been used for its medicinal purposes since ancient times. Its consumption leads to the activation of Cannabis receptors CB1 and CB2 that, through specific mechanisms can lead to modulation and progression of inflammation or repair. The novel findings are linked to the medical use of Cannabis in gastrointestinal (GI) system. PURPOSE: The objective of the present paper is to elucidate the role of Cannabis consumption in GI system. An additional aim is to review the information on the function of Cannabis in non-alcoholic fatty liver disease (NAFLD). METHODS AND RESULTS: This review summarizes the recent findings on the role of cannabinoid receptors, their synthetic or natural ligands, as well as their metabolizing enzymes in normal GI function and its disorders, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and possible adverse events. The synergism or antagonism between Cannabis' active ingredients and the "entourage" plays a role in the efficacy of various strains. Some elements of Cannabis may alter disease severity as over-activation of Cannabis receptors CB1 and CB2 can lead to changes of the commensal gut flora. The endocannabinoid system (ECS) contributes to gut homeostasis. The ability of ECS to modulate inflammatory responses demonstrates the capacity of ECS to preserve gastrointestinal (GI) function. Alterations of the ECS may predispose patients to pathologic disorders, including IBD. Clinical studies in IBD demonstrate that subjects benefit from Cannabis consumption as seen through a reduction of the IBD-inflammation, as well as through a decreased need for other medication. NAFLD is characterized by fat accumulation in the liver. The occurrence of inflammation in NAFLD leads to non-alcoholic-steatohepatitis (NASH). The use of Cannabis might reduce liver inflammation. CONCLUSIONS: With limited evidence of efficacy and safety of Cannabis in IBD, IBS, and NAFLD, randomized controlled studies are required to examine its therapeutic efficacy. Moreover, since long term use of the plant leads to drug use disorders the patients should be followed continuously.


Assuntos
Gastroenteropatias/tratamento farmacológico , Trato Gastrointestinal/efeitos dos fármacos , Maconha Medicinal/farmacologia , Cannabis/química , Endocanabinoides/metabolismo , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiopatologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Maconha Medicinal/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
18.
Chem Biol Interact ; 323: 109054, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32217109

RESUMO

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH) has been associated with fibrosis that may progress to cirrhosis. The purpose of this study was to examine hepatocytes and perisinusoidal cells in liver biopsies of 3 families (3 males and 4 females) with non-cirrhotic and cirrhotic NASH to determine unique histological changes during a period of 2-7 years from diagnosis. METHODS: In this study, hepatocytes, stellate cells and Kupffer cells were analyzed using light and electron microscopy, and immunohistochemistry with specific anti-macrophage antibody staining of liver biopsies. RESULTS: Body mass index of all patients was over 28, and all viral, metabolic markers were negative. Alcohol consumption was insignificant. In all liver biopsies, diffuse, non-zonal macrovesicular steatosis involved 40-70% of liver samples. The lobular hepatocytes showed prominent ballooning hepatocyte degeneration. No Mallory Denk hyaline bodies (MDBs) were observed in three of the patients. MDBs developed in ballooned hepatocytes of four individuals that also presented foci of lobular inflammation. The apoptotic bodies were stained by cytokeratin 18. The trichrome stain revealed portal to portal bridging fibrosis. In one family, there was a three-fold increase in relative numbers of perisinusoidal macrophages in the older sister with NASH compared to livers of the younger siblings. The special finding in livers of patients with NASH was accumulation of groups of perisinusoidal macrophages, which was not associated with focal necrosis. CONCLUSION: Perisinusoidal macrophages appear to accumulate in NASH. It is possible that collections of macrophages are a response to chronic portal endotoxemia or lipotoxic activation of immuno-mediators. The persistent activation of these macrophages could lead to the chronic release of pro-inflammatory cytokines and contribute to chronic inflammation, fibrosis and cirrhosis leading to HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Adulto , Biópsia , Carcinoma Hepatocelular/patologia , Feminino , Células Estreladas do Fígado/patologia , Humanos , Células de Kupffer/patologia , Gotículas Lipídicas/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia
19.
Biomedicines ; 8(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197424

RESUMO

The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.

20.
Gastrointest Endosc ; 91(5): 1005-1014.e17, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31926149

RESUMO

BACKGROUND AND AIMS: Metastasis to the gastrostomy site in patients with upper aerodigestive tract (UADT) malignancies is a rare but devastating adverse event that has been poorly described. Our aim was to determine the overall incidence and clinicopathologic characteristics observed with development of gastrostomy site metastasis in patients with UADT cancers. METHODS: This was a systematic review and meta-analysis of 6138 studies retrieved from Medline, EMBASE, CINAHL, and the Cochrane Register after being queried for studies including gastrostomy site metastasis in patients with UADT malignancies. RESULTS: The final analysis included 121 studies. Pooled analysis showed an overall event rate gastrostomy site metastasis of .5% (95% confidence interval [CI], .4%-.7%). Subgroup analysis showed an event rate of .56% (95% CI, .40%-.79%) with the pull technique and .29% (95% CI, .15%-.55%) with the push technique. Clinicopathologic characteristics observed with gastrostomy site metastasis were late-stage disease (T3/T4) (57.8%), positive lymph node status (51.2%), and no evidence of systemic disease (M0) (62.8%) at initial presentation. The average time from gastrostomy placement to diagnosis of metastasis was 7.78 ± 4.9 months, average tumor size on detection was 4.65 cm (standard deviation, 2.02), and average length of survival was 7.26 months (standard deviation, 6.23). CONCLUSIONS: Gastrostomy site metastasis is a rare but serious adverse event that occurs at an overall rate of .5%, particularly in patients with advanced-stage disease, and is observed with a very poor prognosis. These findings emphasize a need for clinical practice guidelines to include a regular assessment of the PEG site and highlight the importance of detection and management of gastrostomy site metastasis by the multidisciplinary care oncology team.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Gástricas/cirurgia , Gastrostomia , Humanos , Incidência , Metástase Neoplásica , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...